1

Этап 1

Неделя 1

21 сентября—22 сентября

2

Этап 2

Неделя 2

22 сентября—26 сентября

3

Этап 3

Неделя 3

4

Этап 4

Неделя 4

5

Этап 5

Неделя 5

6

Этап 6

Неделя 6

7

Этап 7

Неделя 7

8

Этап 8

Неделя 8

9

Этап 9

Неделя 9

10

Этап 10

Неделя 10

11

Этап 11

Неделя 11

12

Этап 12

Неделя 12

13

Этап 13

Неделя 13

1

Этап 1

Неделя 1

21 сентября—22 сентября

2

Этап 2

Неделя 2

22 сентября—26 сентября

3

Этап 3

Неделя 3

4

Этап 4

Неделя 4

5

Этап 5

Неделя 5

6

Этап 6

Неделя 6

7

Этап 7

Неделя 7

8

Этап 8

Неделя 8

9

Этап 9

Неделя 9

10

Этап 10

Неделя 10

11

Этап 11

Неделя 11

12

Этап 12

Неделя 12

13

Этап 13

Неделя 13

21 сентября 2018 29 декабря 2018
Цель просрочена на 2186 дней

Цель заброшена

Автор не отписывался в цели 6 лет 1 месяц 26 дней

Общая

Пройти курс от Гарварда CS109

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data management to be able to access big data quickly and reliably; exploratory data analysis to generate hypotheses and intuition; prediction based on statistical methods such as regression and classification; and communication of results through visualization, stories, and interpretable summaries.

 Критерий завершения

Все лекции просмотрены, все задания сделаны

  1. Неделя 1

    1. Лекция 1 Course Overview

  2. Неделя 2

    1. Lab 1: Pandas, Python, and Github

    2. Lecture 2: Web Scraping. Regular Expressions. Data Reshaping. Data Cleanup. Pandas

    3. Lecture 3: Exploratory Data Analysis

  3. Неделя 3

    1. Lab 2: Scraping, Pandas, Python, and viz

    2. Lecture 4: Pandas, SQL, and the Grammar of Data

    3. Lecture 5: Statistical Models

  4. Неделя 4

    1. Lab 3: Probability, Distributions, and Frequentist Statistics

    2. Lecture 6: Story Telling and Effective Communication

    3. Lecture 7: Bias and Regression

  5. Неделя 5

    1. Lab 4: Regression, Logistic Regression: in sklearn and statsmodels

    2. Lecture 8: More Regression

    3. Lecture 9: Classification. kNN. Cross Validation. Dimensionality Reduction. PCA. MDS.

  6. Неделя 6

    1. Lab 5: Machine Learning

    2. Lecture 10: SVM, Evaluation.

    3. Lecture 11: Decision Trees and Random Forests

  7. Неделя 7

    1. Lab 6: Machine Learning 2

    2. Lecture 12: Ensemble Methods.

    3. Lecture 13: Best Practices

  8. Неделя 8

    1. Lab 7: Ensembles

    2. Lecture 14: Best Practices, Recommendations and MapReduce

    3. Lecture 15: MapReduce Combiners and Spark

  9. Неделя 9

    1. Lab 8: Vagrant and VirtualBox, AWS, and Spark

    2. Lecture 16: Bayes Theorem and Bayesian Methods

    3. Lecture 17: Bayesian Methods Continued

  10. Неделя 10

    1. Lab 9: Bayes

    2. Lecture 18: Bayesian Methods Continued,Text Data

    3. Lecture BONUS: Interactive Visualization

  11. Неделя 11

    1. Lab 10: Text and Clustering

    2. Lecture 19: Clustering

    3. Lecture 20: Effective Presentations

  12. Неделя 12

    1. Lab 10: Projects, and an example

    2. Lecture 21: Experimental Design

    3. Lecture 22: Deep Networks

  13. Неделя 13

    1. Lecture 23: Guest Lecture: Building Data Science

    2. Lecture 24: Wrapup, and where to go from here.

  • 442
  • 21 сентября 2018, 17:49
Регистрация

Регистрация

Уже зарегистрированы?
Быстрая регистрация через соцсети
Вход на сайт

Входите.
Открыто.

Еще не зарегистрированы?
 
Войти через соцсети
Забыли пароль?