1

Етап 1

Неделя 1

21 вересня—22 вересня

2

Етап 2

Неделя 2

22 вересня—26 вересня

3

Етап 3

Неделя 3

4

Етап 4

Неделя 4

5

Етап 5

Неделя 5

6

Етап 6

Неделя 6

7

Етап 7

Неделя 7

8

Етап 8

Неделя 8

9

Етап 9

Неделя 9

10

Етап 10

Неделя 10

11

Етап 11

Неделя 11

12

Етап 12

Неделя 12

13

Етап 13

Неделя 13

1

Етап 1

Неделя 1

21 вересня—22 вересня

2

Етап 2

Неделя 2

22 вересня—26 вересня

3

Етап 3

Неделя 3

4

Етап 4

Неделя 4

5

Етап 5

Неделя 5

6

Етап 6

Неделя 6

7

Етап 7

Неделя 7

8

Етап 8

Неделя 8

9

Етап 9

Неделя 9

10

Етап 10

Неделя 10

11

Етап 11

Неделя 11

12

Етап 12

Неделя 12

13

Етап 13

Неделя 13

21 вересня 2018 29 грудня 2018
outdated

Мета закинута

Автор не відписував в цілі 6 років 2 месяця 18 днів

Загальна

Пройти курс от Гарварда CS109

Learning from data in order to gain useful predictions and insights. This course introduces methods for five key facets of an investigation: data wrangling, cleaning, and sampling to get a suitable data set; data management to be able to access big data quickly and reliably; exploratory data analysis to generate hypotheses and intuition; prediction based on statistical methods such as regression and classification; and communication of results through visualization, stories, and interpretable summaries.

 Критерій завершення

Все лекции просмотрены, все задания сделаны

  1. Неделя 1

    1. Лекция 1 Course Overview

  2. Неделя 2

    1. Lab 1: Pandas, Python, and Github

    2. Lecture 2: Web Scraping. Regular Expressions. Data Reshaping. Data Cleanup. Pandas

    3. Lecture 3: Exploratory Data Analysis

  3. Неделя 3

    1. Lab 2: Scraping, Pandas, Python, and viz

    2. Lecture 4: Pandas, SQL, and the Grammar of Data

    3. Lecture 5: Statistical Models

  4. Неделя 4

    1. Lab 3: Probability, Distributions, and Frequentist Statistics

    2. Lecture 6: Story Telling and Effective Communication

    3. Lecture 7: Bias and Regression

  5. Неделя 5

    1. Lab 4: Regression, Logistic Regression: in sklearn and statsmodels

    2. Lecture 8: More Regression

    3. Lecture 9: Classification. kNN. Cross Validation. Dimensionality Reduction. PCA. MDS.

  6. Неделя 6

    1. Lab 5: Machine Learning

    2. Lecture 10: SVM, Evaluation.

    3. Lecture 11: Decision Trees and Random Forests

  7. Неделя 7

    1. Lab 6: Machine Learning 2

    2. Lecture 12: Ensemble Methods.

    3. Lecture 13: Best Practices

  8. Неделя 8

    1. Lab 7: Ensembles

    2. Lecture 14: Best Practices, Recommendations and MapReduce

    3. Lecture 15: MapReduce Combiners and Spark

  9. Неделя 9

    1. Lab 8: Vagrant and VirtualBox, AWS, and Spark

    2. Lecture 16: Bayes Theorem and Bayesian Methods

    3. Lecture 17: Bayesian Methods Continued

  10. Неделя 10

    1. Lab 9: Bayes

    2. Lecture 18: Bayesian Methods Continued,Text Data

    3. Lecture BONUS: Interactive Visualization

  11. Неделя 11

    1. Lab 10: Text and Clustering

    2. Lecture 19: Clustering

    3. Lecture 20: Effective Presentations

  12. Неделя 12

    1. Lab 10: Projects, and an example

    2. Lecture 21: Experimental Design

    3. Lecture 22: Deep Networks

  13. Неделя 13

    1. Lecture 23: Guest Lecture: Building Data Science

    2. Lecture 24: Wrapup, and where to go from here.

  • 457
  • 21 вересня 2018, 17:49


Щоденник мети

Коментарі

Наталья10.07.2019

Как идут дела?

Вы тоже можете
опубликовать свою
цель здесь

Мы поможем вам ее достичь!

309 000

единомышленников

инструменты

для увлекательного достижения

Присоединиться
Реєстрація

Можливості
безмежні.
Настав час
відкрити свої.

Уже зарегистрированы?
Швидка реєстрація через соцмережі
Вхід на сайт

Заходьте.
Відкрито.

not_registered
 
Підключіться до будь-якого з ваших акаунтів, ваші дані будуть взяті з акаунту.
Забули пароль?
ParamBoom