Сдать экамен по ТВИМС (Теория Вероятности и Мат Статистики)
Все плохо. Я полный ноль. Казалось бы экзамен 18 января. То есть через 128 дней. На экзамен выносится 46 вопросов + дают задачи на практику. Если 128 поделить на 46 получается 2,782 -> Это примерно 3 дня на один вопрос. +Вычитаю дни когда будет много пар, подготовки к сдачи зачетов и экзаменов по другим предметам и другие "уважительные" причины. Получится примерно 2 дня!
И еще нужно успеть сделать и защитить лабораторные, т.к. в противном случае это спросят на экзамене.
Математика идет один раз в неделю - это лекция или работа с пакетом СтартГрафикс по книжке. Только на экзамене спрашивать знание программы никто не будет - будет теория, которую я ещё не знаю!
По 46 вопросам у меня должен быть текст - что я буду говорить, если меня спросят. Также необходимо потренироваться с практикой.
Если можете что-то посоветовать - напишите, заранее Спасибо)
Критерий завершения
Сдать экзамен по ТВИМС с первого раза
-
Пространство элементарных событий. Алгебра событий.
-
Аксиоматическое определение вероятности. Классическое определение вероятности.
-
Независимость событий. Условные вероятности. Теорема умножения вероятностей.
-
Теорема сложения вероятностей для суммы совместных событий
-
Формула полной вероятности.
-
Формула Байеса
-
Схема Бернулли. Формула Бернулли.
-
Теорема Пуассона.
-
Локальная и интегральная теоремы Муавра-Лапласа (без доказательств)
-
Функция распределения вероятностей и ее основные свойства.
-
Ряд распределения. Многоугольник распределения.
-
Плотность распределения вероятностей и ее основные свойства.
-
Построение функции распределение для дискретной случайной величины. Пример.
-
Числовые характеристики случайных величин. Математическое ожидание и его основные свойства. Примеры вычисления математического ожидания для
-
Мода, медиана, квантили.
-
Биноминальное распределение. Математическое ожидание и дисперсия биноминальных распределений. Пример случайной величины, имеющей биноминальн
-
Распределение Пуассона. Математическое ожидание и дисперсия распределения Пуассона. Пример случайной величины, имеющей распределение Пуассон
-
Показатель распределения. График функции распределения вероятностей и плотности распределения вероятностей. Математическое ожидание (вывод)
-
Числовые характеристики случайных величин. Дисперсия и ее основные свойства. Примеры вычисления дисперсии для дискретной и непрерывной случа
-
Равномерное распределение. График функции распределения вероятностей и плотности распределения вероятностей. Математическое ожидание и диспе
-
Нормальное распределение. Графики функций распределения вероятностей и плотности распределения вероятностей. Математическое ожидание и диспе
-
Нермавенство Маркова.Неравенство Чебышева. Правило трех сигм.
-
Центральная предельная теорема. Закон больших чисел.
-
Совместная функция распределения для двумерной случайной величины и ее основные свойства
-
Вероятность попадания двумерной случайной величины в полуполосу, в прямоугольник
-
Матрица распределения для двумерного дискретного случайного вектора. Получение рядов распределения для компонент дискретного случайного вект
-
Совместная плотность распределения для двумерного случайного вектора и ее основные свойства
-
Построение условных знаков распределения для компонент двумерного случайного вектора
-
Числовые характеристики систем двух случайных величин. Ковариация и ее основные свойства.
-
Коэфициент корреляции. Теорема о величине коэффициента корреляции. Коэффициент корреляции для линейно зависимых случайных величин.
-
Условные числовые характеристики для систем двух случайных величин. Линии регрессии.
-
Выборка. Вариационный ряд. Графическое представаление вариационного ряда.
-
Графическое представление экспериментальных данных. Гистограмма, многоугольник частот. Пример построения. Диаграмма рассеяния, ящик с усами.
-
Числовые характеристики выборки. Выборочная средняя, выборочная дисперсия и их свойства, медиана выборки, квартили, квантили
-
Точные оценки параметров распределения. Состоятельность, несмещенность, эффективность точечной оценки. Примеры точечных оценок.
-
Интервальные оценки. Доверительный интервал. Доверительная вероятность.
-
Построение интервальной оценки для математического ожидания нормальной генеральной совокупности при известном среднем квадратическом отклоне
-
Построение интервальной оценки для математического ожидания нормальной генеральной совокупности при неизвестном среднем квадратическом откло
-
Построение интервальной оценки для дисперсии нормальной генеральной совокупности.
-
Проверка статистических гипотез. Основные понятия.Основная и альтернативная гипотезы. Ошибки первого и второго рода . Мощность критерия. Кри
-
Проверка гипотезы о значении генерального среднего нормальной генеральной совокупности
-
Проверка гипотезы о виде распределения. Критерии согласия Пирсона (критерий хи-квадрат)
-
Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей. Критерий Финнера.
-
Проверка гипотезы о равенстве медиан двух независимых выборок, извлеченных их произвольных генеральных совокупностей. Критерий Уилкоксона
-
Проверка гипотез о равенстве средних двух независимых выборок. Дисперсия обеих выборок неизвестны, но равны.
-
Проверка гипотез о равенстве средних двух независимых выборок. Дисперсии обеих выборок известны.
-
Защитить лабораторную работу №2
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №3
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №4
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №5
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №6
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №7
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Защитить лабораторную работу №8
-
Выполнить в программе СтатГрафикс
-
Понять и расписать ответы на вопросы
-
Защититься у преподавателя
-
-
Сдать экзамен 18 января
-
Разобрать статьи на сайте математика для чайников
- 1681
- 10 октября 2018, 22:34
Командная цель
Цель состоит в группе
Подготовка и сдача экзаменов

-
2205
участников -
3084
цели
Цена слова
4 000 ₽
Вывод

Экзамен сдал, забыл один раз отписаться на сайте, в результате потерял 3000 рублей
Дневник цели

Запись к этапу «Показатель распределения. График функции распределения вероятностей и плотности распределения вероятностей. Математическое ожидание (вывод) »
Андрей7 нояб. 2018, 20:52Просто переписал 19 вопрос



Сегодня защищал лабораторные, в первой остался один вопрос. Во второй указали на недочёты, которые нужно исправить.
Вы тоже можете
опубликовать свою
цель здесь
Мы поможем вам ее достичь!
310 000
единомышленников
инструменты
для увлекательного достижения