1

Step 1

Python for Data Science: Fundamentals

2

Step 2

Python for Data Science: Intermediate

3

Step 3

Pandas & NumPy Fundamentals

4

Step 4

Exploratory Data Visualization

5

Step 5

Storytelling Through Data Visualization

6

Step 6

Data Cleaning and Analysis

7

Step 7

Data Cleaning Project Walkthrough

8

Step 8

Command Line: Beginner

9

Step 9

Command Line: Intermediate

10

Step 10

Git & Version Control

11

Step 11

SQL Fundamentals

12

Step 12

SQL Intermediate: Table Relations & Joins

13

Step 13

SQL & Databases: Advanced

14

Step 14

APIs & Web Scraping

15

Step 15

Statistics: Fundamentals

16

Step 16

Statistics Intermediate: Averages & Variability

17

Step 17

Probability & Statistics in Python: Intermediate

1

Step 1

Python for Data Science: Fundamentals

2

Step 2

Python for Data Science: Intermediate

3

Step 3

Pandas & NumPy Fundamentals

4

Step 4

Exploratory Data Visualization

5

Step 5

Storytelling Through Data Visualization

6

Step 6

Data Cleaning and Analysis

7

Step 7

Data Cleaning Project Walkthrough

8

Step 8

Command Line: Beginner

9

Step 9

Command Line: Intermediate

10

Step 10

Git & Version Control

11

Step 11

SQL Fundamentals

12

Step 12

SQL Intermediate: Table Relations & Joins

13

Step 13

SQL & Databases: Advanced

14

Step 14

APIs & Web Scraping

15

Step 15

Statistics: Fundamentals

16

Step 16

Statistics Intermediate: Averages & Variability

17

Step 17

Probability & Statistics in Python: Intermediate

18 May 2019 15 July 2019
Goal completed 12 November 2019

Goal author

resignedangel

Ukraine, Киев

41 years old

Career & Work

DataQuest: Data Analyst in Python path

Data Analyst in Python

Learn how to make manipulate and analyze data.

This path will teach you the basics of Python and how to use it for data scienceYou’ll learn how to work with data sources, data cleaning techniques, how to perform statistical analyses, data visualization, and predictive analysis. In addition, at the of the path, you will learn how to:

  • Basic and intermediate programming concepts
  • How to clean and visualize data.
  • Probability and statistics for data analysis.
  • Collaboration tools like git and SQL databases.

 Goal Accomplishment Criteria

прошла весь путь

  1. Python for Data Science: Fundamentals

  2. Python for Data Science: Intermediate

  3. Pandas & NumPy Fundamentals

    1. Introduction to NumPy

    2. Boolean Indexing with NumPy

    3. Introduction to pandas

    4. Exploring Data with pandas: Fundamentals

    5. Exploring Data with pandas: Intermediate

    6. Data Cleaning Basics

    7. Guided Project: Exploring Ebay Car Sales Data

  4. Exploratory Data Visualization

    1. Line Charts

    2. Multiple plots

    3. Bar Plots And Scatter Plots

    4. Histograms And Box Plots

    5. Guided Project: Visualizing Earnings Based On College Majors

  5. Storytelling Through Data Visualization

  6. Data Cleaning and Analysis

  7. Data Cleaning Project Walkthrough

  8. Command Line: Beginner

  9. Command Line: Intermediate

  10. Git & Version Control

  11. SQL Fundamentals

  12. SQL Intermediate: Table Relations & Joins

  13. SQL & Databases: Advanced

  14. APIs & Web Scraping

  15. Statistics: Fundamentals

  16. Statistics Intermediate: Averages & Variability

  17. Probability & Statistics in Python: Intermediate

  • 1320
  • 18 May 2019, 05:33
Sign up

Signup

Уже зарегистрированы?
Quick sign-up through social networks.
Sign in

Sign in.
Allowed.

Not registered yet?
 
Log in through social networks
Forgot your password?