1

Этап 1

Изучение Python

Дата начала: 12 марта

2

Этап 2

Повторение Теории вероятности и статистики

Дата начала: 20 июля

3

Этап 3

Короткие курсы на Kaggle

4

Этап 4

Поучавствовать в соревнования на kaggle?

5

Этап 5

Резюме и поиск работы

6

Этап 6

другие этапы (составить план)

1

Этап 1

Изучение Python

Дата начала: 12 марта

2

Этап 2

Повторение Теории вероятности и статистики

Дата начала: 20 июля

3

Этап 3

Короткие курсы на Kaggle

4

Этап 4

Поучавствовать в соревнования на kaggle?

5

Этап 5

Резюме и поиск работы

6

Этап 6

другие этапы (составить план)

29 июня 2020 01 декабря 2020
Цель просрочена на 1479 дней

Цель заброшена

Автор не отписывался в цели 4 года 1 месяц 12 дней

Карьера и работа

Переход в ML (Machine Learning)

Еще в универские времена увлекался машинным обучением и всем вот этим. Но тогда это было больше дурачество, чем серьезные попытки что-то освоить. Хотя я даже диплом на эту тему в итоге писал.

Потом начал искать работу, и там было уже не до переборов: когда у тебя нет "опыта работы", то найти ее почти невозможно. Потому я выбрал наиболее простой для себя вариант: web dev на .net стеке. Время шло, а я все больше разочаровывался в своей профессии: задачи были скучными и рутинными. Совсем не так я себе это представлял.

И вот у меня уже 3 года опыта, я получаю хорошую зарплату. Казалось бы: живи и радуйся. Но когда я на секунду думаю, что мне придется заниматься таким следующие 10, 15, 25 лет - мне становиться не по себе.

А что если я потрачу кучу времени на переобучение, а новая профессия окажеться такой же скучной и рутинной?
Я не знаю ответа на этот вопрос, и не смогу узнать пока не попробую. Но я считаю что лучше жалеть о том, что сделал, чем о том, что не сделал.

 Критерий завершения

Я нашел работу по специальности ML

  1. Короткие курсы на Kaggle

    Не все их этих курсов мне нужны, но какие именно нужны будем разбираться по ходу изучения. Начать планирую с Python, Pandas & Intro to ML. Дальше будет понятно, куда двигаться.

    1. Python

    2. Pandas

    3. Intro to ML

    4. Intermediate ML

    5. Data Visualization

    6. Intro to Deep Learning

    7. Intro to SQL

    8. Advanced SQL

    9. Data Cleaning

    10. Geospatial Analysis

    11. ML Explainability

    12. Microchallenges

    13. Feature Engineering

    14. Computer Vision

  2. Поучавствовать в соревнования на kaggle?

    Большинство работодателей пишет "желательны примеры работы". А соревнования и коры на кагле будут прекрасным "примером работы" и могут помочь в будующем.

  3. Резюме и поиск работы

    1. Оформить резюме отдельным файлом

    2. Поменять описание и навыки в LinkedIn, чтоб они соответствовали новой специальности

    3. Заригестрироваться в djinni и подобных сервисах

    4. ????

    5. Profit!

  4. другие этапы (составить план)

  • 1532
  • 29 июня 2020, 10:37
Регистрация

Регистрация

Уже зарегистрированы?
Быстрая регистрация через соцсети
Вход на сайт

Входите.
Открыто.

Еще не зарегистрированы?
 
Войти через соцсети
Забыли пароль?