Цель заброшена
Автор не отписывался в цели 5 лет 9 месяцев 1 день
Поступить в ШАД
Этап 1: Знать всю необходимую теорию и решение базовых задач.
Этап 2. Решение олимпиадных задача, в том числе задач прошлых лет.
Этап 3: Дополнительное (Узнать о машинном обучении, начать изучение С++)
На данный момент у меня есть уже какие-то познания в алгебре, мат. анализе и теории вероятности. Но мне нужно лучше усвоить базовые знания и научиться решать олимпиадные задачи.
Я уже начинала подготовку к поступлению, но чувствую, что знаю не достаточно, чтобы пройти в этом году (но это не значит, что я не попробую).
Основная сложность при подготовке было то, что я периодически выдыхалась и забрасывала подготовку на долгое время, я считаю, что составление здесь еженедельных отчетов о ходе подготовки поможет мне избежать этого.
Моя главная проблема это я плохо решаю задачи прошлых лет и где-то путаюсь и забываю теорию. Поэтому для закрепления основных теоретических моментов, мне необходимо научиться решать типовые задачи по разным темам.
Возможно будут добавляться новые пункты.
Критерий завершения
Успешно пройденные этапы поступления
Личные ресурсы
1 год на подготовку
Экологичность цели
Для меня это ступенька для получения опыта работы как аналитик данных
-
Комбинаторика
- Основные правила комбинаторики. Правило подсчета количества комбинаторных объектов. Принцип Дирихле. Примеры.
- Множества. Круги Эйлера, операции на множествах. Формула включений и исключений. Примеры.
- Сочетания. Размещения, перестановки и сочетания. Бином Ньютона. Треугольник Паскаля. Сочетания с повторениями.
-
Алгебра
- Подстановки. Определение подстановки, четность подстановок. Произведение подстановок, разложение подстановок в произведение транспозиций и независимых циклов.
- Комплексные числа. Геометрическое изображение, алгебраическая и тригонометрическая форма записи, извлечение корней, корни из единицы.
- Системы линейных уравнений. Прямоугольные матрицы. Приведение матриц и систем линейных уравнений к ступенчатому виду. Метод Гаусса.
- Линейная зависимость и ранг. Линейная зависимость строк (столбцов). Основная лемма о линейной зависимости, базис и ранг системы строк (столбцов). Ранг матрицы. Критерий совместности и определенности системы линейных уравнений в терминах рангов матриц. Фундаментальная система решений однородной системы линейных уравнений.
- Определители. Определитель квадратной матрицы, его основные свойства. Критерий равенства определителя нулю. Формула разложения определителя матрицы по строке (столбцу).
- Операции над матрицами. Операции над матрицами и их свойства. Теорема о ранге произведения двух матриц. Определитель произведения квадратных матриц. Обратная матрица, ее явный вид (формула), способ выражения с помощью элементарных преобразований строк.
- Векторные пространства; базис. Векторное пространство, его базис и размерность. Преобразования координат в векторном пространстве. Подпространства как множества решений систем однородных линейных уравнений. Связь между размерностями суммы и пересечения двух подпространств. Линейная независимость подпространств. Базис и размерность прямой суммы подпространств.
- Линейные отображения и линейные операторы. Линейные отображения, их запись в координатах. Образ и ядро линейного отображения, связь между их размерностями. Сопряженное пространство и сопряженные базисы. Изменение матрицы линейного оператора при переходе к другому базису.
- Билинейные и квадратичные функции. Билинейные функции, их запись в координатах. Изменение матрицы билинейной функции при переходе к другому базису. Ортогональное дополнение к подпространству относительно симметрической билинейной функции. Связь между симметрическими билинейными и квадратичными функциями. Существование ортогонального базиса для симметрической билинейной функции. Нормальный вид вещественной квадратичной функции. Закон инерции.
- Евклидовы пространства. Неравенство Коши-Буняковского. Ортогональные базисы. Ортогонализация Грама-Шмидта. Ортогональные операторы.
- Собственные векторы и собственные значения. Собственные векторы и собственные значения линейного оператора. Собственные подпространства линейного оператора, их линейная независимость. Условие диагонализируемости оператора.
По каждому из этих пунктов необходимо уметь решать типовые задачи и знать теорию.
-
Математический анализ
- Пределы и непрерывность. Пределы последовательностей и функций. Непрерывные функции.
- Ряды. Числовые и функциональные ряды. Признаки сходимости (Даламбера, Коши, интегральный, Лейбница). Абсолютно и условно сходящиеся ряды.
- Дифференцирование. Дифференцирование функций. Применение производной для нахождения экстремумов функций. Формула Тейлора.
- Функции многих переменных. Частные производные. Градиент и его геометрический смысл. Гессиан. Метод градиентного спуска. Поиск экстремумов функций от многих переменных.
- Интегрирование. Определенный и неопределенный интегралы. Методы интегрирования функций. Первообразные различных элементарных функций. Кратные интегралы (двойные, тройные), замена координат, связь с повторными.
- Элементы функционального анализа: нормированные, метрические пространства, непрерывность, ограниченность.
-
Теория вероятностей
- Основные понятия теории вероятностей. Определение вероятностного пространства, простейшие дискретные случаи (выборки с порядком и без него, упорядоченные и неупорядоченные), классическая вероятностная модель. Случайная величина, функция распределения.
- Условные вероятности. Определение условной вероятности, формула полной вероятности, формула Байеса.
- Математическое ожидание, дисперсия, корреляция. Определение математического ожидания, дисперсии, ковариации и корреляции, их свойства.
- Независимость событий. Попарная независимость и независимость в совокупности.
- Основные теоремы теории вероятностей. Неравенство Чебышева. Закон больших чисел. Центральная предельная теорема.
- Распределения. Стандартные дискретные и непрерывные распределения, их математические ожидания, дисперсии и свойства:
- биномиальное;
- равномерное;
- нормальное;
- пуассоновское;
- показательное;
- геометрическое.
-
Программирование, алгоритмы и структуры данных
- Простейшие конструкции языка программирования. Циклы, ветвления, рекурсия.
- Анализ алгоритмов. Понятие о сложности по времени и по памяти. Асимптотика, О-символика. Инварианты, пред- и пост- условия. Доказательство корректности алгоритмов.
- Простейшие структуры данных. Массивы, стеки, очереди, связные списки. Сравнение временных затрат при различных типах операций.
- Строки и операции над ними. Представление строк. Вычисление длины, конкатенация.
- Сортировки. Нижняя теоретико-информационная оценка сложности задачи сортировки. Алгоритмы сортировки вставками, пузырьком, быстрая сортировка, сортировка слиянием. Оценка сложности.
- Указатели. Указатели и динамическое управление памятью.
-
Анализ данных
- сновные задачи машинного обучения: классификация, регрессия, ранжирование, кластеризация. Обучение с учителем и без учителя.
- Предобработка и очистка данных. Работа с пропущенными значениями.
- Feature Engineering. Работа с категориальными признаками.
- Переобучение: как его обнаружить и как с ним бороться. Разделение на обучающую и тестовую выборки. Методы регуляризации.
- Сравнение моделей. Метрики в задачах классификации и регрессии. Методология подбора гиперпараметров.
- Основные модели классификации и регрессии: линейные модели, решающие деревья. Ансамбли алгоритмов.
- 601
- 24 марта 2020, 13:03
Не пропустите новые записи!
Подпишитесь на цель и следите за ее достижением